(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(0', x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
times(x, 0') → 0'
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0') → x
plus(0', x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Types:
times :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
times,
plusThey will be analysed ascendingly in the following order:
plus < times
(6) Obligation:
Innermost TRS:
Rules:
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
0',
x) →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
x,
y))
Types:
times :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
plus, times
They will be analysed ascendingly in the following order:
plus < times
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s2_0(
a),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
plus(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
plus(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(plus(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
0',
x) →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
x,
y))
Types:
times :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
times
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s2_0(
a),
gen_0':s2_0(
n604_0)) →
gen_0':s2_0(
*(
n604_0,
a)), rt ∈ Ω(1 + a·n604
0 + n604
0)
Induction Base:
times(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
times(gen_0':s2_0(a), gen_0':s2_0(+(n604_0, 1))) →RΩ(1)
plus(times(gen_0':s2_0(a), gen_0':s2_0(n604_0)), gen_0':s2_0(a)) →IH
plus(gen_0':s2_0(*(c605_0, a)), gen_0':s2_0(a)) →LΩ(1 + a)
gen_0':s2_0(+(a, *(n604_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
0',
x) →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
x,
y))
Types:
times :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(a), gen_0':s2_0(n604_0)) → gen_0':s2_0(*(n604_0, a)), rt ∈ Ω(1 + a·n6040 + n6040)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(a), gen_0':s2_0(n604_0)) → gen_0':s2_0(*(n604_0, a)), rt ∈ Ω(1 + a·n6040 + n6040)
(14) BOUNDS(n^2, INF)
(15) Obligation:
Innermost TRS:
Rules:
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
0',
x) →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
x,
y))
Types:
times :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(a), gen_0':s2_0(n604_0)) → gen_0':s2_0(*(n604_0, a)), rt ∈ Ω(1 + a·n6040 + n6040)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(a), gen_0':s2_0(n604_0)) → gen_0':s2_0(*(n604_0, a)), rt ∈ Ω(1 + a·n6040 + n6040)
(17) BOUNDS(n^2, INF)
(18) Obligation:
Innermost TRS:
Rules:
times(
x,
0') →
0'times(
x,
s(
y)) →
plus(
times(
x,
y),
x)
plus(
x,
0') →
xplus(
0',
x) →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
x,
y))
Types:
times :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)